

1	A Hand Note of DIGITAL ELECTRONICS	[3 RD SEM ETC/CSE/IT : TH - 3] [Page - 1.2]
	[U]	NIT-1]
	ഴ ൽ	GITAL ELECTRONICS
* A A A	INTRODUCTION :- The term digital refers to a process that is achieved by using discrete unit. The study of number systems is important from the viewpoint of understanding how data are represented before they can be processed by any digital system. It is one of the most basic topics in digital electronics. In number system there are different types	 UNIT-1: BASICS OF DIGITAL ELECTRONICS Binary, Octal. Hexadecimal Numbering Systems. Conversion from one system to another number system Arithmetic Operation-Addition, Subtraction, Multiplication, Division, 1's & 2's Complement of Binary numbers & Subtraction using Complements method Digital Code & its application & distinguish between weighted & non-weight Code, Binary codes, excess-3 and Gray Codes Logic Gates: AND, OR, NOT, NAND, NOR, Exclusive-OR, Exclusive-NOR-Symbol, Function, Expression, Truth table & Timing diagram Universal Gates & its Realization Boolean algebra, Boolean expressions. Demorgan's Theorems.
	of symbols and each symbol has an absolute value and also has place value.	 1.7. Represent Logic Expression: SOP & POS forms 1.8. Karnaugh map (3 & 4 Variables) & Minimization of logical
* >	RADIX or BASE :- The radix or base of a number system is de each position in the number system.	fined as the number of different digits which can occur in
*	RADIX POINT :-	1
	In any positional number system the radix po	nown as radix point.
ŕ	$N_r = [Integen]$	r Part . Fractional Part]
	n	↑ adiv point
*	NUMBER SYSTEM:-	adix point
\triangleright	In general a number in a system having base	or radix 'r' can be written as
	an an-1 an-2	a 1 a 0 . a -1 a -2 a - m
	$Y = a_n x r^n + a_{n-1} x r^{n-1} + a_{n-2} x r^{n-2} + \dots$	$a_{1} + a_{0} \times r^{0} + a_{-1} \times r^{-1} + a_{-2} \times r^{-2} + \dots + a_{-m} \times r^{-m}$
	Where $\mathbf{Y} = $ Value of the entire number	$a_n = $ the value of the n th digit $r = $ radix
*	TYPES OF NUMBER SYSTEM:-	
	1. Decimal number system	3. Octal number system
	 Binary number system 	4. Hexadecimal number system
*	DECIMAL NUMBER SYSTEM:-	$\mathbf{u}_{\mathbf{r}}$ symbols 0.12245678 and 0
	In decimal system 10 symbols are involved, s	so base or radix is 10.
\triangleright	It is a positional weighted number system.	
	All higher numbers after '9' are represented in	n terms of these ten digits only.
	In general, $\mathbf{d}_n \mathbf{d}_{n-1} \mathbf{d}_{n-2} \dots \mathbf{d}_1$	$\mathbf{d}_0 \cdot \mathbf{d}_{-1} \cdot \mathbf{d}_{-2} \cdot \cdots \cdot \mathbf{d}_{-m}$ is given by
	$(d_n \ge 10^n) + (d_{n-1} \ge 10^{n-1}) + \ldots + (d_1 \ge 10^1) + \ldots$	$(d_0 \times 10^0) + (d_{-1} \times 10^{-1}) + (d_{-2} \times 10^{-2}) + \dots + (d_{-m} \times 10^{-m})$
÷	For Example:- $9256.26 = 9000 + 200 + 50$ = $9 \times 1000 + 2 \times 10^{3}$ = $9 \times 10^{3} + 2 \times 10^{3}$	0 + 6 + 0.2 + 0.06 $100 + 5 \times 10 + 6 \times 1 + 2 \times (1/10) + 6 \times (1/100)$ $0^{2} + 5 \times 10^{1} + 6 \times 10^{0} + 2 \times 10^{-1} + 6 \times 10^{-2}$
*	 NOTE: - ✓ The Base or Radix is equal to the no of division of the equal to the second division of the equal to the second division of the equal to the base or radius position to get its place value. ✓ To distinguish a number system from and subscript to the numbers. (9861)₁₀ represented to the number of the second division of the number of the second division of the number of the second division of the number of the nu	gits. The Largest digit is one less than that of its base. dix raised to an appropriate power depending upon the digit other number system, the radix of the system is written as a sents that this number is in Decimal Number System.
	(BASICS OF DIGITAL ELECTRONICS)	Prepared by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engs School

[3RD SEM ETC/CSE/IT : TH - 3]

[Page - 1.3]

= Binary Digit

= 1 Nibble

1024 MB = 1 Gigg Byte (GB) 1024 GB = 1 Tera Byte (TB)

1024 TB = 1 Peta Byte (PB)

1024 ZB = 1 Yotta Byte (YB) 1024 YB = 1 Bronto byte(BB)

1024 BB = 1 Geop byte(GB)

1024 PB = 1 Exa Byte (EB) 1024 FB = 17 eeta Byte (78)

= 1 Byte 1024 KB = 1 Mega Byte(MB)

1 Bit

4 bits

8 Bits

BINARY NUMBER SYSTEM:-

- > The binary number system is a positional weighted system.
- \blacktriangleright The base or radix of this number system is 2.
- \blacktriangleright It has two independent symbols that are 0 and 1.
- \geq A binary digit is called a bit. The radix point of a binary number system which separates integer and fraction part called Binary Point.
- > In general, \mathbf{d}_{n} \mathbf{d}_{n-1} \mathbf{d}_{n-2} \mathbf{d}_{0} \mathbf{d}_{0} \mathbf{d}_{-1} \mathbf{d}_{-2} ... \mathbf{d}_{-k} is given by

 $(d_n x 2^n) + (d_{n-1} x 2^{n-1}) + (d_{n-2} x 2^{n-2}) + \dots + (d_0 x 2^0) + (d_{-1} x 2^{-1}) + (d_{-2} x 2^{-2}) + \dots + (d_{-k} x 2^{-k})$

OCTAL NUMBER SYSTEM:-*

- ▶ It is also a positional weighted system. Its base or radix is 8.
- So its 8 independent symbols are 0,1,2,3,4,5,6 and 7. \geq
- Any number in this system can be written as a group of these eight symbols with subscripts of 8. \triangleright
- \geq Its base $8 = 2^3$, every 3- bit group of binary can be represented by an octal digit.
- In early computer system octal number system was used but now a days it has been replaced by \geq Hexadecimal number system.

***** HEXADECIMAL NUMBER SYSTEM:-

- The hexadecimal number system is a positional weighted system. >
- The base or radix of this number system is 16 such as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F. \geq
- \geq The base $16 = 2^4$, every 4 – bit group of binary can be represented by a hexadecimal digit.
- As both numbers & letters are used, so this number system is also called as *alphanumeric number system* \geq

✤ CONVERSION FROM ONE NUMBER SYSTEM TO ANOTHER SYSTEM :-

1. DECIMAL NUMBER SYSTEM TO OTHER NUMBER SYSTEM: - [D \rightarrow B, D \rightarrow O, D \rightarrow H]

(A.) Decimal to Binary Conversion:-

- The **integer** number is converted to the desired base using successive division by the base or radix. \geq
- Divide **decimal** number successively by 2, read integer part remainder upwards to get equivalent binary. \geq
- Multiply the fraction part by 2. Keep the integer in the product as it is and multiply the new fraction in \geq the product by 2. The process is continued and the integers are read in the products from top to bottom.

For Example: (i) Convert (13)₁₀ into binary. ÷

Solution:

2 I 13 2I6 — 1 2 I 3 -02I1 - 10 -1

 \rightarrow So, the Result of (13)₁₀ is (1101)₂

 $[Also, (46)_{10} \rightarrow (101110)_2; (115)_{10} \rightarrow (1110011)_2; (25)_{10} \rightarrow (11001)_2; (52)_{10} \rightarrow (110100)_2; (27)_{10} \rightarrow (11011)_2]$

* (ii) Conve	ert (105.15)10 into Binary.	
Solution:	Integer part	Fraction part
	2 <u>I 105</u>	$0.15 \ge 2 = 0.30$
	2 <u>I.52</u> — 1	$0.30 \ge 2 = 0.60$
	$2 \underline{I} \underline{26} - 0$	$0.60 \ge 2 = 1.20$
	2113 - 0	$0.20 \ge 2 = 0.40$
	216 - 1	$0.40 \ge 2 = 0.80$
	$2\overline{13} - 0$	$0.80 \ge 2 = 1.60$
	$2\overline{11} - 1$	
	0 — 1 →	So, the Result of $(105.15)_{10}$ i

o, the Result of (105.15)₁₀ is (1101001.001001)₂

[Similarly, $(0.375)_{10} \rightarrow (0.011)_2$; $(0.2)_{10} \rightarrow (0.0011)_2$; $(0.75)_{10} \rightarrow (0.110)_2$; $(111.625)_{10} \rightarrow (1101111.101)_2$]

(B.) Decimal to Octal Conversion:-

To convert decimal integer number to octal, successively divide the given number by 8 till quotient is 0.

To convert the given decimal fractions to octal successively multiply the decimal fraction and the >subsequent decimal fractions by 8 till the product is 0 or till the required accuracy is obtained.

(BASICS OF DIGITAL ELECTRONICS)

Drepared by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engy School

🕱 A Hand N	🛞 A Hand Note of DIGITAL ELECTRONICS [3 RD SEM ETC/CSE/IT : TH - 3] [Page - 1.4]										
For Exa	mple: (i) Convert ((378.93)10 i	nto Octal.								
Solution	Integer p	art		Fraction	part						
	8 <u>1 3 / 8</u> 8 1 47	2	$0.95 \times 6 = 7.44 - 77$ $0.44 \times 8 = 3.52 - 3$								
	8 <u>14/</u> - 815 -	— 2 — 7	$0.44 \times 8 = 3.52 \rightarrow 3$ 0.52 x 8 - 4.16 \rightarrow 4								
	<u>0</u> -	- 5		$0.16 \times 8 =$	$1.28 \rightarrow 1 \rightarrow$ So Re	esult is (572	.7341)8				
[Similarly	$y, (86)_{10} \rightarrow (126)_8; (5)$	43) ₁₀ →(103	37) ₈ ; (2143	8.53) ₁₀ →(4137.	4172)8; (1062.3)1	₀ → (2046.2	314)8]				
(C.) <u>D</u>	ecimal to Hexadeci	mal Convei	<u>rsion</u> : -								
The decimal to hexadecimal conversion is same as octal. For Example: (i) Convert (2598 675) to into Hexadecimal											
For J	Example: (1) Conv	vert (2598.0 art	5/5)10 into Fr	Hexadecimal.							
Solution.	$16 \text{ L} 2598 \qquad 0.675 \text{ x } 16 = 10.8 \rightarrow \text{A}$										
	16 1 162	— 6	0.0	$300 \times 16 = 12.8$	s →C						
	16 1 10	<u> </u>	0.8	300 x 16 = 12.8	s→c						
	0	— 10→A	0.8	$300 \ge 16 = 12.8$	$\rightarrow C \rightarrow \text{Result}$	is (A26.AC	CCC)16				
[Also , (31	$(15)_{10} \rightarrow (C37)_{16};$	$514)_{10} \rightarrow (30)$	C9A) ₁₆ ; (82	2.25) ₁₀ →(52.4)	$(1195.27)_{10} \rightarrow$	(4AB.451E	B8) ₁₆]				
DEC→	BIN	OCT	HEX	DEC→	BIN	OCT	HEX				
19.0625	10011.0001	23.04	13.1	40.375	1001000.0110	50.3	28.6				
24.125	11000.0010	30.1	18.2	49.4375	110001.0111	61.34	31.7				
28.1875	11100.0011	34.14	1C.3	54.5	110110.1000	66.4	36.8				
30.25	11110.0100	36.2	1E.4	57.5625	111001.1001	71.44	39.9				
38.3125	100110.0101	46.24	26.5	62.625	111110.1010	76.5	3E.A				
91.123	1011011.00011	133.053	5B.1F7	97.884	1100001.111	141.704	61.E24				
68.6875	1000100.1011	104.54	44.B	80.875	1010000.1110	120.7	50.E				
73.75	1001001.1100	111.6	49.C	88.9375	1011000.1111	130.74	58.F				
77.8125	1001101.1101	115.64	4D.D	105.781	1101001.1100	151.617	69.C7E				
 2. BINAR (A.) <u>Bi</u> In this m terms are For Exa Solution 	inary to Decimal Content inary to Decimal Content in the decimal to obtain decontent in the decontent of the decon	DISCUSSION: digit of the simal number onvert (1010 0101 = (1 x) = 16 + 100	OTHER 1 e number is er. D1)2 to Dec 2^4) + (0 x - 0+ 4+ 0+	Solution Summer Sum	STEM: $- [B \rightarrow]$ $- (0 \ge 2^1) + (1 \ge 2^0)$ So the Result of (D, B→O, I ight and the) 10101)2 is (21)10				
♣ (ii) Cor	nvert (111.101)2 to 2	Decimal.									
Solution	$(111.101)_2 = ($	$1 \ge 2^2 + (1 \ge 2)$	$x 2^{1}$) + (1 2)	$x 2^{0}$ + (1 x 2 ⁻¹	$) + (0 \ge 2^{-2}) + (1 \ge 2^{-2})$	x 2 ⁻³)					
	= 4	1+2+1+0.	5 + 0 + 0.1	$25 = (7.625)_{10}$	\rightarrow So Result of (1	11.101) ₂ is	(7.625)10				
[Also, (101]	$(1.111)_2 \rightarrow (11.875)_{10}$; (101101.0	1) ₂ →(45.2	5)10;(1101.11)	$(13.75)_{10};(100)$	$(2.001)_2 \rightarrow (4.0)_2$.125) ₁₀ ;]				
(B.) <u>B</u>	mary to Octal Conv	ersion:-	u numboro	are divided in	to groups of 2 hits	anch start:	ng at tha				
binary po	pint and proceeding	towards left	and right		to groups of 5 bits	cacii, starti	ng at the				
♣ For Exa	mple: (i) Convert	(10111110	10110.110	110011)2 into (Octal.						
Solu	tion: Group of 3	3 bits are		101 111 (010 110 . 110	0 110 01	1				
	Convert ea	ach group in	nto octal =	5 7	2 6 . 6	6 3					
	\rightarrow So, The re	sult of (101	11101011().110110011) ₂ i	is (5726.663)8						
♣ (ii)	Convert (10101111	001.0111)2	into Octa	l.							
(Basics of i	DIGITAL ELECTRONICS]		🕮 Prep	ared by Er. PARAM	IANANDA GOUDA, Depa	t of ETC, UCP I	Engg School				

								Q	
🛞 A Hand Note o	f DIGITAL El	ECTRONICS	[.	3 RD SEM ETC	CSE/IT : 1	ГН - 3]	[Page	e - 1.5]	
Solution :	Binary numb	er 1	0 101 11	1 001 .	011 1				
	Group of 3 b	its are =010	0 101 11	11 001 .	011 100				
Convert eac	ch group into	ooctal = 2	5	71.	3 4	\rightarrow The re	esult is (25	71.34)8	
BINARY	OCTAL	BINARY	OCTAL	BINARY	OCTAL	BINAR	Y OCT.	AL	
000	0	010	2	100	4	110	6		
001	1	011	3	101	5	111	7		
[Also, (1011.	$101)_2 \rightarrow (13.5)$)8; (10101.1	$(25.4)_8$;(101101.01)	$2 \rightarrow (55.2)_8$; (1101000	.11) ₂ →(150).6)8]	
(C.) <u>Binary</u>	v to Hexade	<u>cimal Conve</u>	ersion:-						
For conversional and a state of conversion of conversional and a state of conversion of conversio	on binary to	hexadecimal	number the	binary numb	ers starting	from the t	binary poin	t, groups	
▲ For Example	$\mathbf{e} \cdot \mathbf{I} (\mathbf{i}) \mathbf{Con}$	vert (10110	11011 into	y point.) hexadecim a	.l				
Solution:	Given	Binary numb	er	10 1101	1011				
	Group	of 4 bits are	0	010 1101	1011				
	Convert ea	ch group int	o hex =	2 D	в 🗲	So The r	esult is (2D	B)16	
(ii) Conve	ert (0101111	1011.01111	l)2 into hexa	adecimal.				-	
Solution: G	iven Binary	number (010 1111	1011 . 01	11 11				
Gro	oup of 3 bits	are = 00	10 1111	1011 . 01	11 1100				
Convert ea	ch group int	o octal = 2	E F	Β.	7 C	\rightarrow The re	esult is (2F	B.7C)16	
FAL (10110.00	(1) (1 < 0)	/111011 1	$\mathbf{O} = \mathbf{N} \left(\mathbf{O} \mathbf{D} \right) \mathbf{O}$	(1100111		() (1010	10 11) N/		
[Also, (10110.00	J1)2 → (16.2)1	6; (111011.1	$(3B.8)_1$	16;(1100111.	01)2→(67.4	+) ₁₆ ;(1010	10.11)2 → (2	(A.C) ₁₆	
$BIN \rightarrow$	DEC	OCT	HEX	BIN -	→]	DEC	OCT	HEX	
10111011.0101	187.3125	273.24	BB.5	10101010.2	1010 1	.70.626	252.5	AA.A	
10111011.0101	179.7656	263.62	5B.C8	1100011000	0.110	792.75	1430.6	318.C	
10110011.11001	204.50	314.40	CC.8	10101101.1	.1111 1	73.9678	255.76	AD.F8	
11001100.1000	141.8125	115.64	4D.D	110101101.0	00101 1	73.1562	255.12	AD.B8	
10001001.011	137.1875	111.14	89.3	1011101.10	0111 93	3.71875	135.56	5D.B8	
1110011.1110	115.875	163.70	73.E	1000100111	1.110	551.75	1047.6	227.C	
100011.0110	35.375	43.3	23.6	11111100.0	0011 2!	52.1875	374.14	FC.3	
1001001.0011	73.1875	111.14	49.3	11000111.00)1101 19	99.20312	307.15	C7.34	
11001100.1100	204.75	314.6	CC.C	11100111001	1.1111 36	599.9375	3163.74	E73.F	
1110111.1110	199.875	167.7	77.F	1100001100	.00111 78	30.21875	1414.16	300.38	
3. OCTAL NU	JMBER SY	STEM TO	OTHER N	UMBER SY	YSTEM: ·	– [0→B,	, 0→D, 0	→H]	
(A.) <u>Octal</u>	<u>to Binary C</u>	onversion: -				0.1.1.1			
 To convert a Ear Example 	given a octal	number to t (367.52)	inary, repla	ce each octal	digit by its	3- bit bina	ry equivale	nt.	
Solution:	Given	Octal numbe	r is 3	· 67	. 5 2				
Convert each group octal $= 011 \ 110 \ 111 \ .101 \ 010$									
	\rightarrow Result of	(367.52) ₈ is	6 (011110111	1.101010)2					
(B.) <u>Octal</u>	to Decimal (Conversion:	•			1		1.4 . 6 . 4.	
 For conversion and 	add all the m	oduct terms	oer, mutupl	y each digit i	in the octa	i number t	by the weig	in of its	
♣ For Example	e: - Conver	t (4057.06)	to decimal						
Solution: (40	$(57.06)_8 = 4x$	$x8^{3} + 0x8^{2} + 0x8^{$	$5x8^{1} + 7x8^{0}$	$+0x8^{-1}+6x$	$8^{-2} = 2048$	+0+40+	7 + 0 + 0.09	937	
	= (2095.	0937)10	\rightarrow So the	e Result is (20	095.0937)10)			
[Also, (1035.205) ₈ →(1035.26	5) ₁₀ ; (264.34) ₈ →(180.43	7)10; (213.45)) ₈ →(139.57	781)10;(42	2.24) ₈ →(34.	875)10]	
(BASICS OF DIGITA	L ELECTRONICS]		De Pre	pared by Er. PAR	AMANANDA (GOUDA, Dept	of ETC, UCP E	ngg School	

┢╾╴															
	A Hand N	ote of ctol_to		AL ELE	CTRON	ICS		[3 ^{RI}	' SEM ET	FC/CS	E/IT : 7	ГН - 3]		[Pa	ge - 1.6]
Ν	$(\mathbf{U}, \mathbf{U}) = \underbrace{\mathbf{U}}_{\mathbf{U}}$		of of	tol to	Haroda	versio	<u>) </u> :- finat		et the cit		to1	ahar ta	hinomy	and t	han hinamy
	number	to hexa	adecim	nal.	пехаце	ciniai	, mst	conve	it the gr		tai nun		billar y	and t	nen omary
*	For Exa	mple:	- (Conve	rt (756.	603)8	to He	xadeci	imal.						
	Solution	ı:-	Gi	iven o	ctal no.	,	7	5	6	•	6	0	3		
	Convert	each c	octal di	igit to	binary =	=	111	101	110	•	110	000	011		
	Group of	f 4bits	are		:	= (0001	1110	1110	•	1100	0001	1000		
ГА	Convert	4 bits $\lambda(2D)$	group	to hex	. = \(1 \ 2 \	=	$\frac{1}{10000000000000000000000000000000000$		E E	•	C	1 (222 D	8 •	→ (1)	$EE.C18)_{16}$
	$150, (55)_8$	7 (2D))16;(32	.15)87	7(1A.3A	A)16;(106.63)8 → (4	-2.CC) ₁₆	(1062	.57)8 7	·(232.B	$C)_{16};(6)$	42) ₈	$\overline{7(1A2)_{16}}$
			BIN		HEX		DEC		CI→		BI	N	HE.	X	DEC
	3.33	011	.01101	1	3.42188	8	36C		36.26	011	110.010	0110	30.343	375	1E. 58
	6.14	110	0.00110	00	6.1875		6.30	2	46.46	100	110.10	0110	38.593	375	26.98
	7.14	111	.00110	00	7.1875		7.3	7	73.11	111	011.00	1001	59.140)63	3B24
	9.43	100	1.1000	11	9.54687:	5	9.8C	2	13.17	0100	01011.0	01111	139.23	344	8B. 3C
	12.7	001	010.11	1	10.875		A. E		234	0	100111	00	156		9C
	13.66	0010	11.110	110	11.8437	5	B. D8	4	16.14	1000	01110.0	01100	270.18	375	10E.C
	14.17	0011	00.001	111	12.2343	8	C. 3C	4	435.1	100	011101	.001	285.1	25	11D. 2
	21.46	0100	01.100	110	17.5937:	5	11.98	2	464.2	100	110100	0.010	308.2	25	134.4
	24.31	0101	00.011	001	20.3906	3	14.64	7	32.33	1110	11010.0	011011	474.42	219	1DA. 6C
4.	4 HEXADECIMAL NUMBER SYSTEM: $-$ [H \rightarrow B H \rightarrow D H \rightarrow 0]														
	(A.) <u>Hexadecimal to Binary Conversion</u> :-														
\triangleright	 For conversion of hexadecimal to binary, replace hexadecimal digit by its 4 bit binary group. 														
*	* For Example: Convert (3A9E.B0D) ₁₆ into Binary.														
	Solution	: Giv	en He	xadeci	mal nui	nber i	is	0	3 A	A (9	E .	B	0	D
	Convert			cimal	$D_{1}g_{1}t$ to	4 bit	binary	V = 0	011 101 0101001	10 10 1110 1	01 11	10 . 1 001101	011 00	000	1101
	(B .) H		rt cimal	to De	rimal C	onvei	78 18 (0 rsion:		J101001.	1110.1	01100	001101)2		
\triangleright	For conv	version	of he	xadeci	mal to o	decim	al, mu	ltiply	each digi	it in th	e hexa	decimal	l numbe	r by i	its position
	weight a	nd add	l all th	ose pr	oduct te	rms.	,	1 2	U					2	1
÷	For exa	mple:	- C	onver	t (A0F9).0EB	5)16 to	Decin	nal						
	Solution	: (A()F9.0E	EB) ₁₆ =	= (10x1)	5^{3})+(($0x16^{2}$)+(15x	$(16^1) + (16^1)$	9x16 ⁰) + (0x1)	$(6^{-1}) + ($	(14x16 ⁻	$^{2}) + (2)$	$11x16^{-3}$)
		arra da	، = ا مسند	40960	+0+2	40 + 9	9+0+	-0.054	6 + 0.002	26 = (4	41209.0	0572)10			
	$\begin{array}{c} (\mathbf{C}, \mathbf{D}) \underline{\mathbf{H}} \\ \hline \mathbf{For} \mathbf{Conv} \end{array}$	exade	<u>cimai</u>	vadec	imal to	octal	<u>)n</u> : - first (ronvei	t the giv	on hor	vadecir	nal nun	aber to	hinar	v and then
-	binary n	umber	to oct	al.		octai,	11150 0		t the giv		vaucen	nai nun		Umai	y and then
*	For Exa	mple:	- C	onver	t (B9F.	AE)16	to Oc	tal.							
	Solution	ı:-	Gi	ven he	exadeci	nal no	o. is	В	9	F	•	А	E		
	Convert	each h	exade	cimal	digit to	binar	y =	1011	1001	1111	•	1010	1110	-	
	Group of	13 bits	s are	to oct	-1		= 10)1 11	$\begin{array}{c} 0 & 011 \\ 6 & 3 \end{array}$	111	•	101 0	$\frac{11}{2}$ 100) → (5	637 534).
			group Unit		aı. Dim		 []	, , , _{Dee}			, L⊔av∥		5 4 Din 1		U37.334)8
			Пехі			10								20	П ех
		U 1	U 1	8 0	1000	10	8 0	10	10000	20	10	24	11000	30	
2	2 0010	2	2	10	1001	12	A	18	10001	21	11	26	11010	32	17 1A
3	6 0011	3	3	11	1011	13	B	19	10011	23	13	27	11011	33	1B
4	0100	4	4	12	1100	14	С	20	10100	24	14	28	11100	34	1C
5	5 0101	5	5	13	1101	15	D	21	10101	25	15	29	11101	35	1D
6	<u>0110</u>	6	6	14	1110	16	E	22	10110	26	16	30	11110	36	<u>1E</u>
7 7.000 / 000 / 000		7	[7] a a ==	15	11111 	17		<u> </u>] 23		J 27	17 		111111 	3 7	
	lbasics of	DIGITAL	ELECTRO	NICS]				Prepar	ed by Er. F	PARAMA	NANDA	gouda, i	Dept of ET	C, UC	" Engg School

Image: Semigradimental electronics [3 RD SEM ETC/CSE/IT : TH - 3] [Page - 1.7]												
HEX	BIN	OCT	DEC	HEX	BIN	OCT	DEC					
(2B) ₁₆	101011	(53)8	(43)10	(4FC.2A) ₁₆	1001111101.0010101	2374.124	1276.16406					
(98.64) ₁₆	10011000.011001	(230.31)8	152.3906	(5DC.2B8)	10111011100.0010101111	(2734.127) ₈	1500.16992					
(123.26)16	100100011.0010011	(443.114)8	291.148437	(35.F4) ₁₆	110101.111101	(65.75)8	53.953125					
(AB.88) ₁₆	10101011.10001	(253.42)8	171.53125	(25.BAD) ₁₆	100101.101110101101	(45.5655)8	37.729736					
(21F.56C)	1000011111.0101011011	1037.2554	543.338867	(80.0D5) ₁₆	10000000.000011010101)	200.0325	128.052001					
(593.ABC) ₁₆	10110010011.10101011111	2623.5274	1427.67089	(3C.58) ₁₆	111100.01011000	(74.26)8	(60.34375)					
(1012.1F) ₁₆	1000000010010.00011111	10022.076	4114.12109	(E8C.5) ₁₆	111010001100.0101	(7214.24)8	3724.3125					
(AB.BA) ₁₆ 10101011.1011101 (253.564) ₈ 171.72656 (250.9C) ₁₆ 1001010000.100111 (1120.47) ₈ 592.609375												
(211) ₁₆	10000.10001	(1021)8	(529)10	(999.DC) ₁₆	100110011001.110111	(4631.67)8	2457.85937					
(A0B.C0) ₁₆	1001000001011.11	(5013.6)8	(2571.75)10	(9FED.4) ₁₆	1001111111101101.01	117755.2	(40941.25)					
-: ARITHEMATIC OPERATION ON BINARY NUMBER SYSTEM:-												
-: ARITHEMATIC OPERATION ON BINARY NUMBER SYSTEM:- 1. BINARY ADDITION:- > The binary addition rules are as follows (i) $0+0=0$; (ii) $0+1=1$; (iii) $1+0=1$; (iv) $1+1=10$, i.e. 0 with a carry of 1 * For Example: - (i) Add (100101)2 and (1101111)2. Solution: 1001010 \Rightarrow Result is (10010100)2 * (ii) Add (1001)2 and (1110)2. Solution: 1001 $+ \frac{1110}{10111}$ \Rightarrow Result is (10111)2 {Also, 1111+1011=101010; 111+1011=10010; 1101.01+101.11=10011.00; 1101.11 + 1.01 =1111.00; 111+1011=10010; 1101.101+1001.01 = 11110.111; 1011+0101=10000; 1101.11 + 1.01 =1111.00; 111+1011=10010; 1101.101+1001.01 = 11110.111; 1011+0101=10000; 1101.11 + 1.01 =1111.00; 111+1011=10010; 1101.101+1001.01 = 11110.111; 1011+0101=10000; 1101.11 + 1.01 =1111.00; 111+1011=10010; 1101.101+1001.01 = 1110.111; 1011+0101=10000; 1101.11 + 1.01 =1111.00; 111+1011=10010; 1101.101+1001.01 = 11110.111; 1011+0101=10000; 1101.11 + 1.01 =1111.00; 111+1011=10010; 1101.101+1001.01 = 11110.111; 1011+0101=10000; 1101.11 + 1.01 = 1111.00; 111+1011=10010; 1101.01 + 1001.01 = 1110.111; 1011+0101=10000; 1101.11 + 1.01 = 1111.00; 111+1011=10010; 1101.101+1001.10 = 1110.111; 1011+0101=10000; 1101.11 + 1.01 = 1111.00; 111+1011=10010; 1101.101+1001.01 = 11110.111; 1011+0101=10000; 1101.11 + 1.01 = 1111.00; 111+1011=10010; 101.101+1001.10 = 10000; 1101.101+10111=1000111] 2. BINARY SUBTRACTION:- > The binary subtraction rules are as follows (i) $0-0=0$; (ii) $1-1=0$; (iii) $1-0=1$; (iv) $0-1=1$, with a borrow of 1 * For Example: - (i) Subtract (111.111); from (1010.01); Solution: 1010.010 $- \frac{1111.111}{0010.010}$ $- \frac{1011}{0010}$ $- \frac{1011}{0010}$ $- \frac{1011}{0010}$ $- \frac{1011}{0010}$ $- \frac{1011}{0010}$ $+ \frac{1011}{0001}$ $+ \frac{1001}{0010}$ $+ 1$												
3. <u>BINARY MULTIPLICATION</u> : - > The binary multiplication rules are as follows (i) $0 \ge 0$; (ii) $1 \ge 1 = 1$; (iii) $1 \ge 0 = 0$; (iv) $0 \ge 1 = 0$ * For Example: - Multiply (1101)2 by (110)2. Solution :- 1101 $\ge \frac{110}{0000}$ 1101 $+ \frac{1101}{1001110}$ → Result of (1101)2 x (110)2 = (1001110)2 {Also, 1001 x 110=110110; 10111 x 101 = 1110011; 101 x 1110 = 1000110; 110.01 x 1.10 = 1001.0110; 111 x 101 = 100011; 1111 x 1101 = 11000011; 11011 x 11101 = 1100001111; 11.001 x 1.001 = 111.00001}}												
{ Also, 1 111 x 10	001 x 110= 110110 ; 01 = 100011; 1111 x 1	$\frac{1\ 0\ 0\ 1\ 1\ 1}{10111\ x\ 10}$ $101 = 1100$	<u>0</u> → F 01 = 111001 0 0011; 1101	1 ; 101 x 11 1 x 11101 = 1	10 = 1000110; 110.01 1100001111; 11.001 x	10)2 1 x 1.10 =10 x 10.01 =111	01.0110; .00001 }					

X Hand Note of DIGITAL ELECTRONICS	[3 RD SEM I	ETC/CSE/IT : T	Н-	3]	[]	Page - 1.8]					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1		T 1 1'		1 (0)					
> The binary division is very simple and	similar to decim	hal number sys	sten	n. The dr	V1S1	on by 0^{\prime} is					
meaningless. So we have only 2 rules (i)	$0 \div 1 = 0$	(ii) 1	1÷	1 = 1							
* For Example: - Divide (10110) ₂ by (1	10)2.	1001110		110		1101					
Solution: - 110) 101101 (111.1		1001110	-	110	=	1101					
- <u>110</u>		100100	÷	1010	=	11.1					
1010		11001.011	÷	111.01	=	11.1					
		11000	÷	110	=	100					
1001		1100010	÷	111	=	1110					
<u>_110</u>		101100	-	100	_	1011					
110		11000	15 0 00-00	1000		11					
$\frac{110}{200}$	1	1111000	-	1000	-	11					
$000 \rightarrow \text{Rest}$	ult 18 (111.1)2	1111000	÷	100	=	11110					
✤ <u>SIGNED MAGNITUDE REPRESENTA</u>	<u>TION: -</u>										
➢ It is the method of representing a signed number. It use an extra bit at the left most end.											
This additional bit is usually known as sig	n bit and placed a	t most significat	nt e	nd to repr	ese	nt the sign.					
\blacktriangleright A " 0 " is used to represent "+" Sign whe	ere as "1" is used	to represent "	- "	Sign.							
♣ For Example: - $+7 \rightarrow 0, 111$; - $6 \rightarrow 1, 1$	$10; + 12 \rightarrow 0,110$	$00; -12 \rightarrow 1,1$	100);-17 →	1, 1	10001					
✤ <u>1'S COMPLEMENT REPRESENTATIO</u>	<u> DN:</u> -										
> The 1's complement of a binary number is	s obtained by chan	ging each $0 \rightarrow$	1 a	nd each 1	\rightarrow	0.					
> This completed value represents the negation	ive of the original	number.									
♣ For Example: - Find (1100)2 1's comple	ment.										
Solution: - Given 1 1	0 0										
1's complement is 0 0) 1 1	→ Result is	5 (0	011) ₂							
{Similarly, 101010→010101; 1001001→0	110110; 01110→1	1 0001; 1111011	1-	→1000; 10	110	1→10010}					
✤ ADDITION BY USING 1'S COMPLEMENT	METHOD -	To got the Ar		noto Dom	1+	Find					
Example: - Add +4 and +9 by 1's Complete	ement Method	Normal and C	Jeu		ш,						
Solution: - 1's complement of $+4 \rightarrow 01$	100	Number of Digits (\mathbf{n}) by using the									
1's complement of $+9 \rightarrow + 10^{-1}$	001	formula $2^{n-1} - 1 > Max (D_1, D_2, R)$									
111	101 [Both are +ve	numbers. So ad	d tł	nem as in	bina	ary numbers]					
• Example: - Add +3 and -8 by 1's Comple	ement Method										
Solution: - 1's complement of $+3 \rightarrow 00$)11 [As +ve num]	bers. So, Find o	nlv	its binary	eq	uivalent]					
1's complement of $-8 \rightarrow + 01$	[11] [As -ve num]	pers. So, 1's cor	npl	ement of 8	3 (1	(000) = 01111					
$\overline{10}$	10 [As result is	-ve no. to chec	k t	he result l	Find	1 1's of 1010					
i.e. 0101 (=5), So the sum of +3 and -8 is -	-5]										
✤ SUBTRACTION BY USING 1'S COMPLEM	MENT METHOD: -										
Example: - Subtract 7 from 21 by 1's Cor	mplement Method										
Solution: $-21 - 7 = 21 + (-7) \rightarrow$ Find 1's com	nplement of 7 to g	et -7. Then add	wit	h 21 as bi	nary	y addition.					
1's complement of $21 \rightarrow 10101$ [A	As +ve numbers. S	So, Find only its	s bi	nary equiv	ale	nt]					
1's complement of $-7 \rightarrow + \underline{11000}$ [A	As -ve numbers. S	o, 1's complem	ent	of 7 (001	11)	= 11000]					
1 01101											
+1 [As carry Obtained	add this carry	to t	he result]							
01110 [A	As result is +ve no	to the result (1	11	$(0)_2 = (14)_1$	10]						
Subtract (10000) ₂ from (11010) ₂ using 1	's complement.										
Solution:- 11010	11010	=	20	5							
- 10000 => + 011111 (1's complement) = - 16											
Carry $\rightarrow 1$	01001	-	+ 1(J							
+_			_1. •	10							
-	01010 = +10	r 🕈 Rest	ult 1	s +10							
🖎 If carry (end around) is obtained during a	ddition then add t	his carry to LSB	B to	get the co	orre	ct result.					
(BASICS OF DIGITAL ELECTRONICS)	🕮 Prepared by Er.	PARAMANANDA G	out	2A, Dept of E	TC, I	UCP Engg School					

S A Hand Note of DIGITAL ELECTRONICS	[3 RD SEM ETC/CSE/IT : TH - 3]	[Page - 1.9]
✤ <u>2'S COMPLEMENT REPRESENTATION</u> :		
➤ The 2's complement of a binary number is a	binary number which is obtained by add	ing 1 to the 1's
complement of a number i.e. 2's comple	nent = 1's complement + 1	
• For Example: - Find (1010) ₂ 2's complement	it.	
Solution: - Given $1010 \rightarrow 1$'s complement is 010	$01 + 1 = 0110 \rightarrow 2$'s complement of (1010))) ₂ is (0110) ₂
♦ <u>DIFFERENT METHODS TO FIND 2'S CO</u>	<u> DMPLEMENT OF A NUMBER</u> : -	
 Example: - Find 2's complement of (-18)₁₀ 		
$= \frac{\text{METHOD-1}}{\text{Selections}}$	0	
Solution: - Binary of $(18)_{10}$ is = 0001001 1's Complement of this = 1110110	1	
Add $+1$ to this $+$	1	
2's Complement of $00010010 \rightarrow 1110111$	$\frac{1}{0}$	
METHOD-2		
Solution: - Binary repre	sentation of $(18)_{10}$ is = 00010010	
Stating from LSB move towards left an	d coping upto first $1 = 01$	
Then Complement remaining bits to find 2^{2} Complement of (00010010) \rightarrow (1110)	12° s complement no = 11101110	
$2 \text{ s Complement of } (00010010)_2 \rightarrow (1110)_2$	1110)2	
Solution: - The word length of the number	ris $8 \rightarrow 100000000$	
Subtracting (18=00010010) from this	$\frac{-00010010}{-00010010}$	
2's Complement of (00010010)	$)_2 \rightarrow (1\ 1\ 1\ 0\ 1\ 1\ 1\ 0)_2$	
• [Similarly, 2's complement of $(-12)_{10} = (0)$	$(0001100)_2 \rightarrow (11110100)_2 : 2's complement$	ent of $(-101)_{10} =$
$(01100101)_2 \rightarrow (10011011)_2 : 2's complement$	of $(-128)_{10} = (10000000)_2 \rightarrow (10000000)_2$	
 SUBSTRACTION USING 2'S COMPLEM 	ENT METHOD: -	
 In 2's complement subtraction add the 2's co 	mplement of subtrahend to the minuend. It	f there is a carry
out, ignore it. If the MSB is 0, the result is po	positive. If the MSB is 1, the result is negative.	tive and is in its
2's complement form. Then take its 2's compl	ement to get the magnitude in binary.	
♣ For Example: - Subtract (1010100) ₂ from (1	010100)2 using 2's complement.	
Solution: - 1010100 10	10100 = 84	
-1010100 => + 01	01100 (2's complement) = -84	
I <u>00</u>	(100000) (Ignore the carry) 0 (Result = 0) \rightarrow So the result is 100	00000 - 0
Example: - Subtract 18 from 17 by 2's Comp	lement Method	00000 – 0
Solution: $17 - 18 = 17 + (-18) \rightarrow \text{Find } 1\text{'s comp}$	omplement of 18 to get -18. Then add with	17 like binary
2's complement of 17 \rightarrow 1 0 0 0 1 [As +v	ve numbers. So, Find only its binary equiva	lent]
2's complement of - $18 \rightarrow + 01110$ [As -v	re numbers. So, 2's complement of 18 (100	10) = 01110]
11111 [To ch	neck result find 2's of $(11111)_2 = (00001)_2$.	So Result \rightarrow -1]
• Example: - Add - 15 and -20 by 2's Complem	nent Method	
Solution: - 2 s complement of -10 \rightarrow 1 1 1 0 0 2's complement of -20 \rightarrow 1 1 1 0 1 1	0.0	
$2 \text{ s complement of } 20 \text{ / } \frac{11011}{110111}$	0 1 [By Neglating Carry and As it is a n	egative number.
So to check the result find the 2's complement	t of 11011101 is 00100011 (=35) So the re	sult is \rightarrow -35]
DEC SM 1'S 2'S DEC SM 1'S	2'S DEC SM 1'S 2'S DEC S	M 1'S 2'S
0 0,0000 0000 0000 8 0,1000 1000 1 1 0,0001 0001 9 0,1001 1001	1000 -1 1,0001 1110 0010 -9 1,1 1001 -2 10010 1101 0011 - 10 111	001 0110 0111
2 0,0010 0010 0010 10 0,1010 1010	1010 -3 1,0011 1100 0100 -11 1,1	011 0100 0101
3 0,0011 0011 0011 11 0,1011 1011	1011 - 4 1,0100 1011 0101 - 12 1,1	100 0011 0100
4 0,0100 0100 0100 12 0,1100 1100 1 5 0,0101 0101 0101 13 0,1101 1101 1	1100 -5 1,0101 1010 1011 -13 1,1 1101 -6 1.0110 1001 1010 -14 1.1	101 0010 0011
6 0,0110 0110 0110 14 0,1110 1110	1110 -7 1,0111 1000 1001 -15 1,1	111 0000 0001
7 0,0111 0111 0111 15 0,1111 1111	1111 - 8 1,1000 0111 1000	
(BASICS OF DIGITAL ELECTRONICS)	Prepared by Er. PARAMANANDA GOUDA, Dept of El	IC, UCP Engy School

🛞 A I	Hand Note of D	IGITAL ELEC	TRONICS	[3 rd SEM E]	[C/CSE/IT : TH - 3]	[Page - 1.10]		
	ARITHM	R SYS	ΓΕΜ					
SN	DATA - 1	DATA - 2	SUM	DIFFERENCE	PRODUCT	DIVISIO	N (A ÷ B)	
	(A)	(B)			Result	Reminder		
1.	1100101	1011	1110000	1011010	10001010111			
						1001	1	
2.	10011001101	10101	10011100010	10010111000	110010011010001		1	
						111010	1011	
3.	101110.01	101.1	11111110.011	101000.11	11111110.011			
						1000	100.1	
л	1100011 001	11 11	1100110 111	1011111 011	101110011 10111		-	
Τ.	1100011.001	*****	1100110.111		101110011.10111	11010	10.11	
5	1111 1111	111 1111 111 1011		1000 0011	1111011 100001		-	
5.			10111.1011	1000.0011	1111011.100001	10	111	

	ARITHMETIC OPERATIONS ON OCTAL NUMBER SYSTEM												
CNI	DATA - 1	DATA - 2	SUM	DIFFERENCE	PRODUCT	DIVISION (A ÷ B)							
אוכ	(A)	(B)	(A + B)	(A – B)	(A x B)	Result	Reminder						
1	345742	256	346220	345464	11611163/	*							
1.	343742	230	540220	343404	110111034	1244	152						
2	23410154	1605	23411761	23406347	42257746034								
۷.	23410134	1005	23411701	23400347	42237740034	13656	206						
3	7534 21	7534 21 2 56		7531 43	24702 6616								
э.	, 334.21	2.50	/330.//	7551.45	24702.0010	2646	0.75						
л	62100 45	3/1 21	62134 66	62044 24	2610661 2565								
4.	02100.45	54.21	02134.00	02044.24	2010001.2505	1613	33.52						
5	735/ 215	E4 21E 11 7E4 7266 171	7366 171	7242 241	112245 414374								
٦.	7554.215	11.754	/300.1/1	/ 5+2.241	112243.414374	577	5.171						

AR	ARITHMETIC OPERATION ON HEXADECIMAL NUMBER SYSTEM											
CNI	DATA - 1	DATA - 2	SUM	DIFFERENCE	PRODUCT	DIVISIO	N (A ÷ B)					
SIN	(A)	(B)	(A + B)	(A – B)	(A x B)	Result	Reminder					
1	2F3029	B⊿F	264578	2E2EDA	21612B507	x, sui nui 1001 1001 1001 1001 1001 1001 1007) i nai i mai i nai i nai i mai i nai i nai i nai i mai i nai i nai i					
1.	21 3823	D41	214378	ZIZEDA	210120377	42D	146					
2	3BAD45	194	3BAEDE	3BABAB	56938082							
2.		15/1	30,1201	36,67,67	5F958082	2542	191					
3	64360 2	183.9	6451F B	641B8 9	AA816A7 32							
5.	01000.2	105.5	01311.0	01100.0	/ ((010) () .02	3AE	B0.4					
Δ	68BD BD	2 AD	68C0 6A	68BB 1	11843 B2B9							
		2	0000.07	0000.1	110 13.0203	2724	2.69					
5.	CD5.48F	AB.6	D80.A8F	C29.F8F	89747 B3AA							
5.	020.101	, 13.0	22011101	023.201		13.2B	5.FD					
(BA	SICS OF DIGITAL E	ELECTRONICS]	Ĺ	D Prepared by Er. P	ARAMANANDA GOUDA,	Dept of ETC, U	ICP Engg School					

[3RD SEM ETC/CSE/IT : TH - 3]

* DIGITAL CODES: -

- > Codes are the representation of information in particular format.
- > The information may include numbers, alphabets and symbols which can man and machine recognize.
- Date is transmitted in terms of code-words over long distance it is. During the transmission process, error may introduce. To detect and correct the errors, special codes are used in digital communication.
- > This requires the conversion of the incoming data into binary format before it can be processed.
- There is various possible ways of doing this and this process is called encoding.
- > To achieve the reverse of it, we use decoders.

♣ <u>APPLICATION</u>: -

- To represent numeric or alpha-numeric or special characters in only binary digits i.e. 0 or 1.
- > To check whether a character transmitted in the coded form is correctly received if not then to correct it.
- i. e. for detecting and correcting of errors. Different codes are used to store and transmit data efficiently.
- ♦ CLASSIFICATION OF BINARY CODES: -

✤ <u>WEIGHTED AND NON-WEIGHTED CODES</u>: -

- > In weighted codes, for each position or bit, there is specific weight attached.
- For example, in Binary Number, each bit is assigned particular weight 2^n where 'n' is the bit number for n = 0, 1, 2, 3 and 4 the weights are 1, 2, 4, 8, and 16 respectively. **Example**: BCD, Binary etc.
- Non-weighted codes are codes which are not assigned with any weight to each digit position, i.e., each digit position within the number are not assigned fixed value. Example: Excess-3 code & Gray codes.

* BINARY CODED DECIMAL (BCD):-

- BCD is a weighted code. In weighted codes, each successive digit from right to left represents weights equal to some specified value and to get the equivalent decimal number add the products of the weights by the corresponding binary digit.
- ▶ 8421 is the most common because 8421 BCD is the most natural amongst the other possible codes.
- > In this code each decimal digit is expressed by its 4 bit binary equivalent.
- ♣ For example: $(567)_{10}$ is encoded in various 4 bit codes \rightarrow 0101 0110 0111 (In 8421 BCD Code)

Decimal	Binary	BCD	Decimal	Binary	BCD	Decimal	Binary	BCD
0	0000	0000	10	1010	0001 0000	45	101101	0100 0101
2	0010	0010	12	1100	0001 0010	52	110100	0101 0010
4	0100	0100	15	1111	0001 0101	59	111011	0101 1001
5	0101	0101	23	10111	0010 0011	98	1100010	1001 1000
7	0111	0111	27	11011	0010 0111	102	1100110	0001 0000 0010
9	1001	1001	30	11110	0011 0000	105	1101001	0001 0000 0101

(BASICS OF DIGITAL ELECTRONICS)

🛄 Prepared by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engy School

🖉 A Hand Note of DIGITAL ELECTRONI	CS [3 RD SEM ETC/CSE/IT : TH - 3]	[Page - 1.12]
 ★ Examples: - Convert the BCD code Solution: - 1001 0101 0111 → (9 5) 	e (100101010111) _{BCD} to its decimal equivalent. $7)_{10}$	
 ★ Examples: - Convert the decimal me Solution: - 215.43→ (0010 0001 01) 	umber (215.43) ₁₀ to it equivalent BCD Code. 101. 0100 0011) _{BCD}	
 ▲ Examples: - Convert the binary nur Solution: - (1101 .10)₂ = (13.5)₁₀ = 	nber $(1101.10)_2$ to it equivalent BCD Code. (0001 0011.0101) _{BCD}	
✤ <u>BCD ADDITION</u> : -		
➢ Addition of BCD (8421) is perform	ed by adding two digits of binary, starting from le	east significant digit.
In case if the result is an illegal code that part(4-bit group) only and add t	e (Greater than 9) or if there is a carry out of one he resulting carry to the next most significant.	then add 0110 (6) to
For Example: - Add 647 with 78	2 using BCD Addition.	
$+ 7 8 2 \rightarrow (+) 0111$	1000 0111 (047 III BCD) 1000 0010 (782 in BCD)	
$1 \frac{7}{4} \frac{2}{2} \frac{9}{1101}$	$\frac{1000 0010}{(1^{\text{st}} \& 2^{\text{nd}} \text{ Terms are Illegal of } \mathbb{I})}$	codes)
+ 0110	+0110 (Add 0110 to Illegal Parts or	nly)
+ 1	(As Carry obtained, so add th	nis to next MSB)
1 0100	0010 1001	~ (1430)
• Ear Example: Add 670 6 with 5	2 9 (Corrected Sum) - Result is	S (1429)10
Solution: - 679.6 01	10 0111 1001 . 0110 (679.6 in BCD)	
$+ 5 3 6.8 \rightarrow + 01$	01 0011 0110 . 1000 (536.8 in BCD)	
1 2 1 6.4 10	11 1010 1111 . 1110 (All are illegal code	es)
+ 01	10 + 0110 + 0110 + 0110 (Add 0110 to each)	,
0001 00	010 0001 0110 .0100	
1	$2 1 6 . 4 (Corrected Sum) \rightarrow H$	Result is (1216.4)10
 BCD SUBTRACTION: - The BCD subtraction is performed a corresponding 4 – bit group of the m If there is no borrow from the next for the next gradient of the second sec	by subtracting the digits of each $4 - bit$ group of ninuend in the binary starting from the LSD. nigher group then no correction is required. roup, then 6_{10} (0110) is subtracted from difference	the subtrahend from e term of this group.
 For Example: - Subtract 147.8 fr 	om 206.7 using 8421 BCD code.	
Solution: - 2 0 6 . 7	0010 0000 0110 . 0111 (206.7 in BC	CD)
(-) <u>1 4 / .8</u> 7 ($\begin{array}{c} -) \ \underline{0001} \ 0100 \ 0111 \ . \ 1000 \ \end{array} \tag{147.8 in B}$	CD)
58.9	(-)0110 (-)0110 (-)0110	e present)
	0101 1000 . 1001	
	5 8 . 9 [Corrected Differ	rence is → (58.9) ₁₀]
\diamond EXCESS THREE (XS-3) (CODE: -	
The Excess-3 code, also called XS -	3. is a non- weighted BCD code. It is a sequential	code.
> This can be derived by adding 03 (0)	011) to each decimal digit before converting into	equivalent binary.
➢ It is also a self complementing cod	e. Because In this code, the 1's complement of	the excess-3 code is
excess-3 code for the 9's compleme	nt of the corresponding decimal number.	
For Ex: The excess-3 code for 2 is (0101, the 1's complement of 0101 is 1010. It is th	e excess-3 code of 7
 Examples: - Convert decimal nu 	mber 129 to its equivalent excess-3 number.	
Solution: - Add (+3) to each of the	decimal digits $\rightarrow 4$ 5 12 \rightarrow (0100 0101 1100)	XS-3
Examples: - Convert XS-3 code 1	10011010 to its equivalent decimal number.	
Solution: - Given XS-3 is 1001100	1. Subtract (3 or 0011) from each of the digits \rightarrow	$0110\ 0111 \rightarrow (67)_{10}$
(BASICS OF DIGITAL ELECTRONICS)	🛄 Prepared by Er. PARAMANANDA GOUDA, Dept	of ETC, UCP Engg School

	ote of DI	GITAL ELECTRONIC	<u> </u>	[3 RD SE	M ETC/CSE/I	T : TH - 3]	[Page - 1.13
Decimal	BCD	After Adding 3 to each decimal digits	XS-3	Decimal	BCD	After Adding 3 to each decimal digits	XS-3
0	0000	3	0011	12	0001 0010	45	0100 0101
5	0101	8	1000	23	0010 0011	56	0101 0110
7	0111	10	1010	45	0100 0101	78	0111 1000
9	1001	12	1100	63	0111 0011	96	1001 0110
In XS-3 LSD. If term of t For exam	addition there is a hose gro mple: - A	, add the XS-3 nur no carry out from t ups. If there is a car Add 37 and 28 usin	nbers by he addit ry out, a g XS-3 (y adding the ion of any add 0011 to code.	e 4 bit groups of the 4 bit gr the sum term	in each column st roups, subtract 001 of those groups	arting from 1 from the s
XS-3 SU To subtr group of If there i If there i	6 d UBTRA act in XS the minutes no borro s a borro	5 11 - <u>00</u> 100 CTION:- S-3 number by subtuend starting from t row from the next 4 w, subtract 0011 from	00 010 <u>11 +001</u> 01 100 racting e he LSB. -bit grou om the d	1 (Carry 1 (Add (0 (Correction) each 4-bit g up, add 0011 ifference te	is generated A 0110 to correct cted sum in X roup of the su to the differe rm.	Add this propagated t 0101 & Subtract 0 $S-3 = 65_{10}$ {9-3 ; t btrahend from corr	l carry to MS 011 to 1100) 8-3} esponding 4- roups.
For Example: - Subtract 1/5 from 207 using XS-5 code.) Solution: - 2 6 7 (-) $\frac{1}{7}$ $\frac{5}{0}$ $\frac{0101}{100}$ 1010 $(267 < 5.9 \ 10 > \text{ in XS} - 3)$ (-) $\frac{1}{7}$ $\frac{5}{0}$ $\frac{0100}{1010}$ 1010 $(267 < 5.9 \ 10 > \text{ in XS} - 3)$ (-) $\frac{1}{7}$ $\frac{5}{0}$ $\frac{0100}{1010}$ 1010 $(175 < 4.10 \ 8 > \text{ in XS} - 3)$ (0000 1111 0010 (Correct 0010 and 0000 both by adding 0011) + $\frac{0011}{0011}$ 00101 (Correct 1111) by subtracting 0011) (0011 1100 0101 $(Correct 0.10 \ 10.00)$ $(S \ 2 - 0.2)$							
ALPHZ Alphanu	ANUMI meric co	ERIC CODES : - des are used to enco	ode the c	characters of	f alphabet in a	ddition to the decin	nal digits.
They are keyboard Most por	e used pr is and vio	rimarily for transm deo display termina dern alphanumeric	itting da lls. codes ar	ta between	computers and I Code and the	nd its I/O devices and EBCDIC Code.	such as print
1 1	CODE	-		_			
ASCII (The Am	erican St	andard Code for Ir	nformatio	on Intercha	nge (ASCII) t	pronounced as 'AS	KEE' is wid
ASCII The Am used alpl The num	erican St hanumer iber of di	andard Code for In ic code. This is basi fferent bit patterns	nformatio cally a 7 that can	on Intercha bit code. be created y	nge (ASCII) _I with 7 bits is 2	pronounced as 'AS $2^7 = 128$.	KEE' is wid

- alphanumeric code. Since $2^8 = 256$ bit patterns can be formed with 8 bits.
- This code is used to encode all symbols and characters found in ASCII along with some other special characters. In fact, many of the bit patterns in EBCDIC code are not assigned. It is used by most large computers to communicate in alphanumeric data. The table shown below shows the EBCDIC code.

* GRAY CODE: -

- The gray code is a non-weighted code. It is not a BCD code. It is cyclic code because successive words in this differ in one bit position only i.e. it is a unit distance code.
- Gray code is used in instrumentation & data acquisition systems where linear or angular displacement is measured. They are also used in shaft encoders, I/O devices, A/D converters & other peripheral devices.

(BASICS OF DIGITAL ELECTRONICS)

🛄 Prepared by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engg School

A Hand Note of DIGITAL ELECTRONICS [3	3 RD SEM ETC/CSE/IT : TH - 3] [Page - 1.14]
♦ <u>BINARY- TO – GRAY CONVERSION</u> : -	
 ➢ If an n-bit binary number is represented by B_n B_n-Where B_n and G_n are the MSBs, then gray code bin G_n = B_n; G_{n-1} = B_n⊕ B_{n-1}; G₁ = B₂⊕ B₁, Where B_n = B_n ; G_{n-1} = B_n⊕ B_{n-1}; G₁ = B₂⊕ B₁, Where B_n = B_n ; G_{n-1} = B_n⊕ B_{n-1}; G₁ = B₂⊕ B₁, Where B_n = B_n ; G_{n-1} = B_n⊕ B_{n-1}; G₁ = B₂⊕ B₁, Where B_n = B_n ; G_{n-1} = B_n⊕ B_{n-1}; G₁ = B₂⊕ B₁, Where B_n = B_n ; G_{n-1} = B_n⊕ B_{n-1}; G₁ = B₂⊕ B₁, Where B_n = B_n ; G_{n-1} = B_n⊕ B_{n-1}; G₁ = B₂⊕ B₁, Where B_n = B_n ; G_{n-1} = B_n⊕ B_{n-1}; G₁ = B₂⊕ B₁, Where B_n = B_n ; G_{n-1} = B_n⊕ B_{n-1}; G₁ = B₂⊕ B₁, Where B_n = B_n ; G_{n-1} = B_n⊕ ; G_n = B_n ; G_n = B_n ; G_n = B_n ; G_{n-1} = B_n⊕ ; G_n = B_n ; G_n ; G_n = B_n ; G_n ; G_n = B_n ; G_n = B_n ; G_n ; G_n = B_n ; G_n ;	1 B ₁ and its gray code equivalent by $G_n G_{n-1} \dots G_1$, its are obtained from the binary code as follows : - Where symbol " \oplus " stands for Exclusive-OR (X-OR) Gray code. $\oplus \longrightarrow 1$
$G_{ray} \rightarrow 1$	The grav code is (1101) c
* Example: - Convert the (3A7) $_{16}$ into the Gray Solution: - Now find the binary of $(3A7)_{16} \rightarrow (00111)$	code. $(0100111)_2 \rightarrow (001001110100)_G$
Binary \rightarrow 0 \rightarrow \oplus \rightarrow 0 \rightarrow \oplus \rightarrow 1 \rightarrow \oplus \rightarrow 1 \rightarrow \oplus \rightarrow 1 \rightarrow \oplus \rightarrow 0 \rightarrow	$\Rightarrow \oplus \Rightarrow 1 \longrightarrow \oplus \Rightarrow 0 \longrightarrow \oplus \Rightarrow 0 \longrightarrow \oplus \Rightarrow 1 \longrightarrow \oplus \Rightarrow 1 \longrightarrow \oplus \Rightarrow 1$
$Gray \rightarrow 0 \qquad 0 \qquad 1 \qquad 0 \qquad 0 \qquad 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Example: - Convert the (652) 10 into the Gray	code.
Solution: - Now find the binary of $(652)_{10} \rightarrow (10100)$	$(11100)_2 \rightarrow (1111001010)_G$
$\text{Binary} \rightarrow \begin{array}{c} 1 \longrightarrow \oplus \rightarrow 0 \longrightarrow \oplus \rightarrow 1 \longrightarrow \oplus \rightarrow 0 \oplus \rightarrow 0$	$\mathbf{D} \to 0 \to 0 \to 1 \to 0 \to 1 \to 0 \to 0 \to 0 \to 0$
$Gray \rightarrow 1 \qquad 1 \qquad 1 \qquad 0$	0 1 0 1 0
* <u>GRAY- TO - BINARY CONVERSION</u> : -	
If an n-bit gray number is represented by G _n G _{n-1} then binary bits are obtained from Gray bits as foll B _n = G _n ; B _{n-1} = B _n ⊕ G _{n-1} B ₁ = B ₂ ⊕G ₁	G_1 and its binary equivalent by $B_n B_{n-1} B_1$, lows :
• For Example: - Convert the Gray code 1101 f Solution: - Gray \rightarrow 1 1	to the binary.
$Binary \rightarrow \rightarrow 1 \qquad 0 \qquad 0 \qquad 0$	$ \begin{array}{c} \bullet \\ \bullet \\$
Example: - Convert Gray code 10110010 into ed	quivalent Binary, Octal, Hexadecimal and Decimal.
Solution: - Gray \rightarrow 1 Binary \rightarrow 1 \oplus 1 \oplus 0 \oplus	
\rightarrow Thus the equivalent results are (11011100) ₂ , (334)	$_{8}(DC)_{16}(220)_{10}$
✤ ERROR DETECTION & CORRECTION	<u> (CODE</u> : -
 When information in digital form is transmitted in 0 OR 0 becomes 1 and a wrong information may r and correct such errors. Parity and Hamming Cod ERROR DETECTION CODE: - 	long distance, errors may get introduced & 1 becomes received at destination. Special codes are used to detect des are used for error detection and correction process.
> The problem of wrong information received at des	stination due to introduction of error in transmission of
digital formed data over long distance is overcome	by using error-detecting codes.
The simple error detection codes are (1) Parity Cod PARITY CODES:	les and (11) Block Parity codes.
 Usually ASCII code is used for sending digital data telephone lines 	4-BIT MESSAGE Even Parity Code Word Odd Parity Code Word M3 M2 M1 M0 P M3 M2 M1 M0 0
 The 1-bit or more than 1-bit errors may or transmitted data. To detect these errors, a parity 	0 0 0 1 1 0 0 1 0 0 1 0 0 1 1
 usually transmitted along with the data bits. receiving end, parity will be checked. ➤ The format of parity code word is PM_{N-1} M_{N-2} M₃M₂M₁M₀ where P is a parity bit and M_{N-1} to M message bits. There are two types of parity: → 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
 For an even parity code, the total number of 1s parity code word is even. 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(BASICS OF DIGITAL ELECTRONICS)	pased by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engg School

[3RD SEM ETC/CSE/IT : TH - 3]

[Page - 1.15]

- ➢ For an odd parity code, the total number of 1s in the parity code word is odd.
- ➤ A 4-bit message with even parity & odd parity is in Table.
- > The single parity bit code can detect single bit errors.
- ➢ If the error is more than 1-bit, it cannot be detected.
- ➢ For example, assume the even parity code word sent by the transmitter is 10111 and the code word received by the receiver is 10011, the parity of received code word is odd, it shows that a 1-bit error is introduced in channel.
- But if the receiving code word is 10001, then the parity of received code word is even, and it shows that there is no error introduced over the channel, actually two bits are changed over the path.
- The 1-bit parity code word can detect 1-bit errors, but it cannot detect the location of the error or correct the error.
- The circuit that generates the parity bit at the transmitting end is called a parity generator and the circuit that checks the parity at the receiving end is called a **parity generator** and the circuit that checks the parity at the receiving end is called a **parity checker**

✤ <u>LOGIC GATES</u>: -

- Logic gates are the fundamental building blocks of digital systems.
- The name Logic is derived from the ability of such a device to make decisions.
- It produces one output level when some combinations of input levels are present and a different output level when other combinations of input levels are present.
- There are three Basic types of gates such as NOT Gate, AND Gate & OR Gate.
- Computers are able to perform very complex logic operations by interconnecting these basic gates.
- The interconnection of gates to perform a variety of logical operations is called logic design.
- Logic gates are electronic circuits because they are made up of a number of electronic devices and components. Each gate is dedicated to specific logic operation.
- Inputs and outputs of logic gates can occur only in two levels.
- These two levels are termed HIGH and LOW or TRUE and FALSE or ON and OFF or simply 1 and 0.
- The table which lists all the possible combinations of input variables and the corresponding outputs is called a **Truth Table**. It shows how the logic circuits output responds to various combinations of inputs.

✤ <u>DIFFERENT LEVEL OF LOGIC</u>: -

- A logic in which the voltage levels represents logic 1 & logic 0. Level logic may be +ve or -ve logic.
- **Positive Logic:** A positive logic system is the one in which the higher of the two voltage levels represents the logic 1 and the lower of the two voltages level represents the logic 0.
- **Negative Logic:** A negative logic system is the one in which the lower of the two voltage levels represents the logic 1 and the higher of the two voltages level represents the logic 0.

* ANALOG SIGNALS Vs DIGITAL SIGNALS: -

- A Signal which can assumes any value in a given range is known as Analog Signal.
- A Sinusoidal signal and amplitude modulated signal are examples of Analog Signals.
- A signal which can assume only two possible values is known as a **Digital Signal**.
- Voltage levels of 0V or 1V and presence or absence of pulses are examples of Digital Signals.
- Analog signal is *continuous* and can assume any value in a given range;
- Where as a digital signal can have only two *discrete* values.

4 <u>DIFFERENT TYPES OF LOGIC GATES</u>: - [<u>Fundamental Gates]</u>

* <u>NOT GATE (INVERTER)</u>: -

- A NOT gate, also called an inverter, has only one input and one output.
- It is a device whose output is always complement of its input.
- The output of a NOT gate is the logic 1 state when its input is in logic 0 state and the logic 0 state when its inputs is in logic 1 state.
- The IC **7404** contains **Six** numbers of NOT Gate.
- The logic symbol and Truth Table of NOT Gate is shown in figures.

(BASICS OF DIGITAL ELECTRONICS)

🛄 Prepared by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engg School

UNIVERSAL GATES: -

- There are three basic gates AND, OR and NOT. •
- There are two universal gates NAND and NOR, each of which can realize logic circuits single handedly.
- The NAND and NOR gates are called **universal** building blocks.
- As by using these Gates we can construct other type of logic Gates.
- Both NAND and NOR gates can perform all logic functions i.e. AND, OR, NOT, EX-OR and EX-NOR.

4 NAND GATE AS A UNIVERSAL GATES: -

a) NAND Gate as Inverter (NOT Gate) : -

- When two inputs of NAND gate are joined together, so that it has one • input and one output, resulting circuit act as a NOT Gate.
- Here Input is = **A** and Output is = \overline{A}

b) NAND Gate as an AND Gate : -

- Here, we use two NAND Gates in a manner as shown in figure. •
- The output of first NAND Gate is given to the second NAND gate • acting as inverter. The resulting circuit act as a AND Gate.
- Here Input are = A & B and Output is = AB. •

[**AND** Gate using NAND Gates only]

c) NAND Gate as OR Gate : -

- For this purpose we use three gates in a manner as shown in figure.
- The first two gates are operated as NOT Gates and their outputs are fed to third NAND Gate. •
- The resulting Circuit act as an OR gate. •
- Here Input are = A & B and Output is = A+B.

[OR Gate using NAND Gates only]

d) <u>NAND Gate as NOR Gate</u> : -

[NOR Gate using NAND Gates only]

e) NAND Gate as EX-OR Gate : -

(BASICS OF DIGITAL ELECTRONICS)

OF	OR Gate by NAND Gate					
Α	В	Q 1	Q 2	Q 3		
0	0	1	1	0		
0	1	1	0	1		
1	0	0	1	1		
1	1	0	0	1		

[Truth Table for NAND Gate as an **OR** Gate]

NC	NOR Gate by NAND Gate						
Α	В	Q 1	Q 2	Q₃	Q 4		
0	0	1	1	0	1		
0	1	1	0	1	0		
1	0	0	1	1	0		
1	1	0	0	1	0		

[Truth Table for NAND Gate as an NOR Gate]

NAND Gate as EX-NOR Gate : -

Depared by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engy School

[Page - 1.19]

٠O

AND Gate by NAND Gate				
Α	В	Q 1	Q 2	
0	0	1	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

[Truth Table for NAND Gate as an AND Gate]

[3RD SEM ETC/CSE/IT : TH - 3]

[**NOT** Gate by Using NAND Gates only]

A Hand Note of DIGITAL ELECTRONICS [3RD SEM ETC/CSE/IT : TH - 3] **4 NOR** GATE AS A UNIVERSAL GATES: -

a) NOR Gate as Inverter (NOT Gate) : -

When two inputs of NOR gate are joined together, so that it has one input and one output, resulting circuit act as a NOT Gate.

- Here Input is = **A** and Output is = \overline{A}
- b) NOR Gate as an OR Gate : -
- Here, we use two NOR Gates in a manner as shown in figure. •
- The output of first NOR Gate is given to the second NOR gate acting as inverter.
- The resulting circuit act as a OR Gate.
- Here Input are = A & B and Output is = A+B. •

[**OR** Gate by using NOR Gates only] [Truth Table for NOR as **OR** Gate \rightarrow]

c) NOR Gate as AND Gate : -

- For this purpose we use three gates in a manner as shown in figure. •
- The first two gates are operated as NOT Gates and their outputs are fed to third NOR Gate.
- The resulting Circuit act as an AND gate.
- Here Input are = $\mathbf{A} \otimes \mathbf{B}$ and Output is = \mathbf{AB} . •

[AND Gate by using NOR Gates only]

d) NOR Gate as NAND Gate : -

[NAND Gate by using NOR Gates only]

e) NOR Gate as EX-OR Gate : -

🛄 Prepared by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engs School

[First Two Figures are for NOR Gate as EX-OR Gate and third Figure is for NOR Gate as EX-NOR Gate]

(BASICS OF DIGITAL ELECTRONICS)

[NOT Gate by using NOR Gates only]

OR Gate by NOR Gate				
Α	В	Qı	Q 2	
0	0	1	0	
0	1	0	1	
1	0	0	1	
1	1	0	1	

Α	AND Gate by NOR Gate				
Α	В	Q 1	Q 2	Q₃	
0	0	1	1	0	
0	1	1	0	0	
1	0	0	1	0	
1	1	0	0	1	

[Truth Table for NOR Gate as an AND Gate]

NAND Gate by NOR Gate						
Α	В	Q 1	Q 2	Q₃	Q 4	
0	0	1	1	0	1	
0	1	1	0	0	1	
1	0	0	1	0	1	
1	1	0	0	1	0	

[Truth Table for NOR Gate as an NAND Gate]

[Page - 1.20]

A Hand Note of DIGITAL ELECTRONICS [3RD SEM ETC/CSE/IT : TH - 3] [Page - 1.21]BOOLEAN ALGEBRA Boolean Variable: -* \triangleright A Variable having only two possible values, Such as 1/0, HIGH/LOW, ON/OFF or TRUE/FALSE. **Boolean Algebra : -*** \triangleright A System of algebra that operates on Boolean variables. The binary nature of Boolean algebra makes it useful for analysis, simplification and design of logic circuits. **Boolean Expression: -*** An algebraic expression made up of Boolean variables and operators such as AND, OR and NOT. \geq Boolean Expression is also called as **Boolean Function** or **Logic Function**. \geq INTRODUCTION : -* Switching circuits are also called logic circuits, gates circuits and digital circuits. \triangleright Switching algebra is also called Boolean algebra. Boolean algebra is a system of mathematical logic. \geq It is an algebraic system consisting of the set of elements (0, 1), two binary operators called OR and \geq AND and unary operator called NOT. It is the basic mathematical tool in the analysis and synthesis of switching circuits. It is a way to express \geq logic functions algebraically. Any complex logic can be expressed by a Boolean function. The Boolean algebra is governed by certain well developed rules and laws. \triangleright Boolean algebra is different from both ordinary algebra and binary number system. \triangleright In Boolean algebra $\mathbf{A} + \mathbf{A} = \mathbf{A} \& \mathbf{A} \cdot \mathbf{A} = \mathbf{A}$, because the variable has only a logical value either 1 or 0. \triangleright \geq In Boolean algebra 1 + 1 = 1 where as in Binary algebra 1 + 1 = 10 and in Ordinary algebra 1 + 1 = 2. \triangleright There is nothing like Subtraction or Division. Also no negative or fractional value in Boolean algebra. In Boolean algebra, the multiplication and addition of the variables and functions are also only logical. \geq \triangleright Logical multiplication is same as the AND operation and logical addition is same as the OR operation. \triangleright Here only two constants 0 and 1 found where as it can any numbers of constant in other algebra system. ♦ <u>AXIOMS</u>: - [Accepts without Proof] **NOT Operations AND Operations OR** Operations **Axiom 3**: 0, 0 = 0**Axiom 7**: 0 + 0 = 0Axiom 1 : $\overline{1} = 0$ **Axiom 4**: 0. 1 = 0 **Axiom 8**: 0 + 1 = 1**Axiom 5**: 1. 0 = 0 **Axiom 9**: 1 + 0 = 1Axiom 2 : $\overline{0} = 1$ **Axiom 6**: 1. 1 = 1 **Axiom 10**: 1 + 1 = 1

LAWS OF BOOLEAN ALGEBRA: -

Complementation LAWS	OR LAWS	AND LAWS
Law 1: $\bar{0} = 1$	Law 1: $A + 0 = A$ (Null law)	Law 1: A . $0 = 0$ (Null law)
Law 2: $\overline{1} = 0$	Law 2: $A + 1 = 1$ (Identity law)	Law 2: A \cdot 1 = A (Identity law)
Law 3: If $A = 0$, then $\overline{A} = 1$	Law 3: $A + A = A$	Law 3: $A \cdot A = A$
Law 4: If $A = 1$, then $\overline{A} = 0$	Law 4: $A + \overline{A} = 1$	Law 4: A . $\overline{A} = 0$
Law 5: $\overline{\overline{A}} = A$		

• **<u>COMMUTATIVE LAWS</u>**: - Commutative laws allow change in position of AND or OR variables.

There are two commutative laws. Law 1: A + B = B + A & Law 2: $A \cdot B = B \cdot A$

Proof by Truth Table : -

Α	В	A+ B	B+A
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

Α	В	A.B	B.A
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

This law can be extended to any number of variables. For example A.B. C = B. C. A = C. A. B = B. A. C

(BASICS OF DIGITAL ELECTRONICS)

🛄 Prepared by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engg School

[3RD SEM ETC/CSE/IT : TH - 3] [

[Page - 1.23]

 $\overline{\mathbf{A}} + \overline{\mathbf{B}}$

1

1

1

0

+B

AΒ

* <u>DE MORGAN'S THEOREM</u>:-

- > De Morgan's theorem represents two of the most powerful laws in Boolean algebra.
- > 1st Law States that the complement of a Sum of variables is equal to the Product of their Individual complements. That is → Law 1: $\overline{A + B} = \overline{A} \cdot \overline{B}$

> 2nd Law States that the complement of a Product of variables is equal to the Sum of their Individual complements. That is \rightarrow Law 2: $\overline{A \cdot B} = \overline{A} + \overline{B}$

Α

0

0

1

1

в

0

1

0

1

A . **B**

0

0

0

1

 $\overline{\mathbf{A} \cdot \mathbf{B}}$

1

1

1

0

Ā

1

1

0

0

Ē

1

0

1

0

 $Q = \overline{A}$

> Proof by Truth Table (Distributive Laws): -

A	В	A + B	$\overline{\mathbf{A} + \mathbf{B}}$	Ā	B	$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

NOR Gate is Equivalent to Bubbled AND Gate

NAND Gate is Equivalent to Bubbled OR Gate

- Demorgan's law can be extended any number of variables or combinations of variables. Such as: -
 - (1) $\overline{ABCD} \dots \overline{ABCD} = \overline{A} + \overline{B} + \overline{C} + \overline{D} + \dots$ (2) $\overline{A + B + C + D} \dots \overline{ABC} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot \dots$
 - (3) $\overline{(AB)(CD)(EFG)} = \overline{AB} + \overline{CD} + \overline{EFG}$ (4) $\overline{(A+B)(C+D)(E+F+G)} = \overline{A} \ \overline{B} + \overline{C} \ \overline{D} + \overline{E} \ \overline{F} \ \overline{G}$

✤ <u>DUALITY</u>:-

- The implication of the duality concept is that once a theorem or statement is proved, the dual also thus stand proved. This is called the principle of duality.
- In this method we can produce a dual identity by changing all '+' sign to '*'; all '*' sign to '+' and complementing all 0s and 1s. The variables are *not complemented* in this process.
 - **i. e.** [f (A, B, C,....,0, 1, +, \cdot)]_d = f(A, B, C,, 1, 0, \cdot , +)
- Relations between complement and dual
- $f_{c}(A, B, C,) = \overline{f(A, B, C,)} = f_{d}(A, B, C,) \leftrightarrow f_{d}(A, B, C,) = \overline{f(\overline{A}, \overline{B}, \overline{C},)} = f_{c}(\overline{A}, \overline{B}, \overline{C},)$
- The first relation states that the complement of a function f (A, B, C, ...) can be obtained by complementing all the variables in the dual function f_d (A, B, C,).
- > The 2nd relation states that the dual can be obtained by complementing all the literals in $f(\overline{A}, \overline{B}, \overline{C},)$

(BASICS OF DIGITAL ELECTRONICS)

🛄 Prepared by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engs School

A Hand Note of DIGITAL ELECTRONICS [3RD SEM ETC/CSE/IT : TH - 3] [Page - 1.24] * EXAMPLES: -O1. De Morgan: - $[\overline{AB} + (A + B)]$ **Solution:** $[\overline{AB} + (\overline{A} + \overline{B})] = \overline{AB} \cdot \overline{(A + B)} = (\overline{A} + \overline{B}) (\overline{A} \cdot \overline{B}) = \overline{A} \cdot \overline{A} \cdot \overline{B} + \overline{B} \cdot \overline{A} \cdot \overline{B} = \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{B} = \overline{A} \cdot \overline$ Q2. Apply De Morgan's theorem to the given expression: - $(\overline{A + \overline{B}})(C + \overline{D})$ **Solution:** $\overline{(A + \overline{B})(C + \overline{D})} = \overline{(A + \overline{B})} + \overline{(C + \overline{D})} = (\overline{A} \cdot \overline{\overline{B}}) + (\overline{C} \cdot \overline{\overline{D}}) = \overline{AB} + \overline{CD}$ Q3. Reduce the expression, $f = \overline{[\overline{AB} + \overline{A} + AB]}$ **Solution:** $\overline{[AB + \overline{A} + AB]} = \overline{AB} \cdot \overline{A} \cdot \overline{AB} = AB \cdot A \cdot \overline{AB} = AB \cdot \overline{AB} = 0$ Q4. Reduce the expression, $f = A [B + \overline{C} (AB + A\overline{C})]$ **Solution:** -A $[B + \overline{C} (\overline{AB + A\overline{C}})] = A [B + \overline{C} (\overline{AB} \cdot \overline{A\overline{C}})] = A [B + \overline{C} (\overline{A} + \overline{B}) (\overline{A} + C)]$ $= A [B + \overline{C} (\overline{A} \overline{A} + \overline{A}C + \overline{B} \overline{A} + \overline{B}C)] = A [B + \overline{C} \overline{A} + \overline{C} \overline{A}C + \overline{B} \overline{A}\overline{C} + \overline{C} \overline{B}C]$ (As. $\overline{C} \overline{A}C = 0$. $\overline{C} \overline{B}C = 0$) $= A [B + \overline{A} \overline{C} + \overline{B} \overline{A} \overline{C}] = AB + A\overline{A} \overline{C} + A\overline{B} \overline{A} \overline{C} = AB$ $(As, A\overline{A}\overline{C} = 0, A\overline{B}\overline{A}\overline{C} = 0)$ Q5. Reduce the expression, $f = A + B [AC + (B + \overline{C}) D]$ **Solution:** $-A + B [AC + (B + \overline{C}) D] = A + B (AC + BD + \overline{C}D) = A + ABC + BD + B\overline{C}D$ $= A(1 + BC) + BD (1 + \overline{C}) = A \cdot 1 + BD \cdot 1 = A + BD$ O6. Reduce the expression, $f = (A + \overline{BC}) (A\overline{B} + ABC)$ **Solution:** $(A + \overline{BC}) (A\overline{B} + ABC) = (\overline{A} \cdot \overline{BC}) (A\overline{B} + ABC) = \overline{ABC} \cdot A\overline{B} + \overline{ABC} \cdot ABC = 0 + 0 = 0$ Q7. Reduce the expression, $f = (B + BC) (B + \overline{B}C) (B + D)$ Solution: $(B + BC)(B + \overline{B}C)(B + D) = (BB + B\overline{B}C + B \cdot BC + BC \cdot \overline{B}C)(B + D)$ [As, $B\overline{B}C = 0$, $BC \cdot \overline{B}C = 0$] $= (B + BC) (B + D) = B(1 + C) (B + D) = B \cdot 1 + B + D = B(1 + D) = B \cdot 1 = B$ **O8.** Show that $AB + A\overline{B}C + B\overline{C} = AC + B\overline{C}$ **Solution:** -L.H.S: - AB + \overline{ABC} + \overline{BC} = A(B + \overline{BC}) + \overline{BC} = A(B + \overline{B}) (B + C) + \overline{BC} = AB + AC + \overline{BC} $= AB(C + \overline{C}) + AC + B\overline{C} = ABC + AB\overline{C} + AC + B\overline{C} = AC(1 + B) + B\overline{C}(1 + A) = AC + B\overline{C} = \textbf{R.H.S}$ **O9.** Show that $\overline{ABC} + B + \overline{BD} + \overline{ABD} + \overline{AC} = B + C$ **Solution:** -L.H.S: - $A\overline{B}C + B + B\overline{D} + AB\overline{D} + \overline{A}C = A\overline{B}C + \overline{A}C + B + B\overline{D} + AB\overline{D}$ $= C(A\overline{B} + \overline{A}) + B(1 + \overline{D} + A\overline{D}) = C(\overline{A} + A)(\overline{A} + \overline{B}) + B = C(\overline{A} + \overline{B}) + B = C\overline{A} + C\overline{B} + B \text{ (As, } \overline{A} + A = 1)$ $= (B + C) (B + \overline{B}) + C\overline{A} = (B + C) + C\overline{A} = B + C(1 + \overline{A}) = B + C \cdot 1 = B + C = R.H.S$ (Proved) 🖊 SIMPLIFY FOLLOWING BOOLEAN EXPRESSION TO A MINIMUM NUMBER OF LITERALS : - $\overrightarrow{XY} + \overrightarrow{XY} + \overrightarrow{XY} = \overrightarrow{XY} + Y(X + \overrightarrow{X}) = \overrightarrow{XY} + Y = (\overrightarrow{X} + Y)(\overrightarrow{Y} + Y) = \overrightarrow{X} + Y$ $(\mathbf{X} + \mathbf{Y}) (\mathbf{X} + \overline{\mathbf{Y}}) = \mathbf{X}\mathbf{X} + \mathbf{X}\overline{\mathbf{Y}} + \mathbf{X}\mathbf{Y} + \mathbf{Y}\overline{\mathbf{Y}} = \mathbf{X} + \mathbf{X}\overline{\mathbf{Y}} + \mathbf{X}\mathbf{Y} + \mathbf{0} = \mathbf{X} (1 + \overline{\mathbf{Y}} + \mathbf{Y}) = \mathbf{X} \cdot \mathbf{1} = \mathbf{X}$ \blacktriangleright $\overline{A}\overline{C} + ABC + A\overline{C} = \overline{C}(\overline{A} + A) + ABC = (\overline{C} + ABC) = (\overline{C} + C)(\overline{C} + AB) = \overline{C} + AB$ $\overrightarrow{AB}(\overrightarrow{D} + \overrightarrow{CD}) + \overrightarrow{B}(\overrightarrow{A} + \overrightarrow{A}\overrightarrow{CD}) = \overrightarrow{AB}\overrightarrow{D} + \overrightarrow{AB}\overrightarrow{CD} + \overrightarrow{AB} + \overrightarrow{AB}\overrightarrow{CD} = \overrightarrow{ABD} + \overrightarrow{AB}\overrightarrow{D} + \overrightarrow{AB}$ $=\overline{A}B (D + \overline{D}) + AB = \overline{A}B + AB = B (\overline{A} + A) = B$ \triangleright $(\overline{\mathbf{A}} + \mathbf{C}) (\overline{\mathbf{A}} + \overline{\mathbf{C}}) (\overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{C}} \mathbf{D}) = (\overline{\mathbf{A}} \cdot \overline{\mathbf{A}} + \overline{\mathbf{A}} \cdot \overline{\mathbf{C}} + \overline{\mathbf{A}} \cdot \mathbf{C} + \overline{\mathbf{C}} \cdot \mathbf{C}) (\overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{C}} \mathbf{D})$ $=\overline{A}(1+\overline{C}+C)(\overline{A}+B+\overline{C}D)=\overline{A}+\overline{A}B+\overline{A}\overline{C}D=\overline{A}(1+B+\overline{C}D)=\overline{A}$ $AB + A (B + C) + \overline{B} (B + D) = AB + AB + AC + \overline{B}B + \overline{B}D = AB + AC + \overline{B}D = A (B + C) + \overline{B}D$ \blacktriangleright A + B + \overline{ABC} = (A + \overline{A}) (A + \overline{BC}) + B = A + \overline{BC} + B = A + (B + \overline{B}) (B + C) = A + B + C **ABEF** + **AB** \overline{EF} + \overline{AB} \overline{EF} = AB (EF + \overline{EF}) + \overline{AB} EF = AB + \overline{AB} EF = (AB + \overline{AB}) (AB + EF) $\mathbf{ABC\overline{D}} + \mathbf{A} + \mathbf{AB\overline{D}} + \mathbf{\overline{D}}(\mathbf{\overline{ABC}}) = \mathbf{ABC\overline{D}} + \mathbf{A} + \mathbf{AB\overline{D}} + \mathbf{\overline{D}\overline{ABC}} = \mathbf{A}(\mathbf{BC\overline{D}} + 1 + \mathbf{B\overline{D}}) + \mathbf{\overline{ABC\overline{D}}}$ \geq $= A + \overline{A}\overline{B}\overline{C}\overline{D} = (A + \overline{A})(\overline{A} + \overline{B}\overline{C}\overline{D}) = A + \overline{B}\overline{C}\overline{D}$ \succ X [Y + Z ($\overline{XY} + \overline{XZ}$)] = X [Y + Z (\overline{XY} . \overline{XZ})] = XY + XZ . \overline{XY} . \overline{XZ} = XY + 0 = XY $\overrightarrow{\mathbf{X}\mathbf{Z}} + \overrightarrow{\mathbf{Y}\mathbf{Z}} + \mathbf{Y}\overrightarrow{\mathbf{Z}} + \mathbf{X}\mathbf{Y}\mathbf{Z} = \overrightarrow{\mathbf{X}\mathbf{Z}} + \overrightarrow{\mathbf{Z}}(\overrightarrow{\mathbf{Y}} + \mathbf{Y}) + \mathbf{X}\mathbf{Y}\mathbf{Z} = \overrightarrow{\mathbf{X}\mathbf{Z}} + \overrightarrow{\mathbf{Z}} + \mathbf{X}\mathbf{Y}\mathbf{Z} = \overrightarrow{\mathbf{Z}}(\overrightarrow{\mathbf{X}} + 1) + \mathbf{X}\mathbf{Y}\mathbf{Z}$ $=\overline{Z} + XYZ = (\overline{Z} + XY) (\overline{Z} + Z) = \overline{Z} + XY$ Decimal | C | ĀB | ĒC | ĀB + ĒC Α В ✤ BOOLEAN EXPRESSIONS & THEIR REPRESENTATIONS : -Code 0 0 0 0 0 0 0 > There are different ways of representing a given function in following ways:-1 0 0 1 0 1 1 Sum - Of - Products (SOP) Form: - This form is also called the Disjunctive 2 1 0 1 0 1 0 Normal Form (DNF). For Example: - $f(A, B, C) = \overline{AB} + \overline{BC}$ 3 0 1 0 1 1 1 ♣ Product- Of – Sums (POS) Form: - This form is also called the Conjunctive 4 0 0 0 0 0 1 For Example: - $f(A, B, C) = (\overline{A} + \overline{B}) + (B + C)$ Normal Form (CNF). 5 0 1 1 1 0 1 • <u>**Truth Table Form**</u> : - [For example $f(A, B, C) = \overline{AB} + \overline{BC}$] 6 1 1 0 0 0 0 7 0 (BASICS OF DIGITAL ELECTRONICS) 🛄 Prepared by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engs School

A Hand Note of DIGITAL ELECTRONICS [3RD SEM ETC/CSE/IT : TH - 3] [Page - 1.25] STANDARD SUM - OF - PRODUCTS (SOP) FORM: -

- It is also called the *Disjunctive Canonical Form* (DCF) or *Expanded Sum of Products* or *Canonical Sum of Products* Form.
- In this form, the function is the sum of a number of products terms where each product term contains all the variables of the function either in complemented or uncomplimentary form.
- This can also be derived from the truth table by finding the sum of all the terms that corresponds to those combinations for which the function 'f' assumes the value 1.
 - It can also be obtained from the SOP form algebraically as shown below;

 \geq

 $f(A, B, C) = \overline{A}B + \overline{B}C = \overline{A}B(C + \overline{C}) + \overline{B}C(A + \overline{A}) = \overline{A}BC + \overline{A}B\overline{C} + \overline{A}\overline{B}C + \overline{A}\overline{B}C$

- ➤ A product term which contains all the variables of the functions either in complemented or un complement form is called a MINTERM.
- > The Sum of the minterms whose value is equal to 1 is the standard sum of product form of the function.
- > The minterm is denoted as $m_0, m_1, m_2 \dots$ Where the suffixes are the decimal codes of the combinations.
- An 'n' variable function can have 2^n numbers of minterms. So, for a 3-variable function the minterms are: $\mathbf{m}_0 = \overline{ABC}$, $\mathbf{m}_1 = \overline{ABC}$, $\mathbf{m}_2 = \overline{ABC}$, $\mathbf{m}_3 = \overline{ABC}$, $\mathbf{m}_4 = \overline{ABC}$, $\mathbf{m}_5 = \overline{ABC}$, $\mathbf{m}_6 = \overline{ABC}$, $\mathbf{m}_7 = \overline{ABC}$.
- Another way of representing the function in canonical SOP form is by showing the sum of minterms for which the function equals to 1. Thus, $f(A,B,C) = m_1 + m_2 + m_3 + m_5$
- Another way of representing the function is by listing the decimal codes of the minterms for which f = 1. Thus, $f(A, B, C) = \sum m (1, 2, 3, 5)$. Where, $\sum m$ represents the sum of all the minterms whose decimal codes are given in the parenthesis.

* STANDARD PRODUCT- OF – SUMS (POS) FORM: -

- This form is also called as Conjunctive Canonical Form (CCF) or Expanded Product-Of-Sums Form or Canonical Product-Of-Sums Form.
- > It is derived by considering the combinations for which f = 0, each term is a sum of all the variables.
- A variable is written in uncomplimentary form if it has a value of '0' in the combination and appears in complemented form if it has a value of "1" in the combination.
- For example the sum corresponding to 4^{th} row in the above table (3 = 011) is (A + \overline{B} + \overline{C}).
- ➢ It can also be obtained from the POS [Normal form] form algebraically as shown below: -
- Thus the function $f(A, B, C) = (\overline{A} + \overline{B}) (A + B)$ is given by the product of sum can converted to standard or canonical form as follows, $f(A, B, C) = (\overline{A} + \overline{B} + C \cdot \overline{C}) + (A + B + C \cdot \overline{C})$

$$= (\overline{\mathbf{A}} + \overline{\mathbf{B}} + \mathbf{C}) (\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}) (\mathbf{A} + \mathbf{B} + \mathbf{C}) (\mathbf{A} + \mathbf{B} + \overline{\mathbf{C}})$$

- A sum term which contains all the variables in either complemented or uncomplimentary form is called a MAXTERM.
- ➤ A Maxterm assumes the value "0" only for one combination of the variables. For other it will "1".
- > The product of Maxterm corresponding to the rows for which, f = 0 if the Standard Product- Of Sums form of the function.
- > Maxterm are represented as M_0 , M_1 , M_2where the suffixes are the decimal codes of the combinations.
- An 'n' variable function can have 2^n numbers of Maxterms. So, for a 3-variable function the Maxterms are: $M_0 = A + B + C$, $M_1 = A + B + \overline{C}$, $M_2 = A + \overline{B} + C$, $M_3 = A + \overline{B} + \overline{C}$,
 - $\mathbf{M}_{0} = \overline{A} + \overline{B} + \overline{C}, \qquad \mathbf{M}_{1} = \overline{A} + \overline{B} + \overline{C}, \qquad \mathbf{M}_{2} = \overline{A} + \overline{B} + \overline{C}, \qquad \mathbf{M}_{3} = \overline{A} + \overline{B} + \overline{C}, \\ \mathbf{M}_{4} = \overline{A} + \overline{B} + \overline{C}, \qquad \mathbf{M}_{5} = \overline{A} + \overline{B} + \overline{C}, \qquad \mathbf{M}_{6} = \overline{A} + \overline{B} + \overline{C}, \qquad \mathbf{M}_{7} = \overline{A} + \overline{B} + \overline{C}.$
- Thus CCF of a function 'f' is written as, $f(A, B, C) = M_0 \cdot M_4 \cdot M_6 \cdot M_7$ or f(A, B, C) = IIM (0, 4, 6, 7). Where, Π represents product of all the Maxterm whose decimal codes are given within the parenthesis.

* <u>CONVERSION BETWEEN CANONICAL FORM</u>: -

The complement of a function expressed as the sum of minterms equals the sum of minterms missing from the original function.

For Example: - f (A, B, C) = $\sum m (0, 2, 4, 6, 7)$; So, $\overline{f(A, B, C)} = \sum m (1, 3, 5) = m_1 + m_3 + m_5$

- Now if we take the complement of " \overline{f} " by DE Morgan's theorem, we obtain "f" in a different form, $f = \overline{m_1 + m_3 + m_5} = \overline{m_1} \cdot \overline{m_3} \cdot \overline{m_5} = \overline{M_1} \cdot \overline{M_3} \cdot \overline{M_5} = \pi M (1, 3, 5)$
- > In fact $\overline{m_j} = M_j$. Thus, the **Maxterm** with subscript **j** is a complement of the **minterm** with the same subscript **j** and vice versa.
- > To convert one canonical form to another, inter change the symbol $\sum \& \Pi$ and list out those numbers missing from the original form.

(BASICS OF DIGITAL ELECTRONICS)

Drepared by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engs School

(BASICS OF DIGITAL ELECTRONICS)

Depared by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engy School

(BASICS OF DIGITAL ELECTRONICS)

Depared by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engs School

Image: A Hand Note of DIGITAL ELECTRONICS [3]	RD SEM ETC/CSE/IT : TH - 3] [Page - 1.	34]					
SOME MORE QUESTIONS FOR PRACTICE: -							
1. Convert the following to minterm, (A) $A + \overline{B} \overline{C}$ (B) $\overline{A} + B + CA$ (C) A	$BC + AB + DC + \overline{D}$						
2. Convert the following to Maxterm, (A) A (B + \overline{C}) (B) (A + \overline{B}) (\overline{A} + D) (C) ($A + B + \overline{D}$ ($\overline{A} + C + D$) ($\overline{A} + \overline{D}$) (d) A ($\overline{A} + B$) \overline{C}						
3. Reduce the following by K-map, [A] AB + \overline{ABC} + \overline{ABC}	\overline{C} + B \overline{C} [B] AB \overline{C} + AB + B \overline{C} + D \overline{B} [C] AB + A \overline{C} + AD + A \overline{B} C + A	3C					
4. Reduce the following by K-map, [A] (A+B)(A+ \overline{B} +C)(A	Reduce the following by K-map, [A] $(A+B)(A+\overline{B}+C)(A+\overline{C})$ [B] $A(B+\overline{C})(A+\overline{B})(B+C+\overline{D})$ [C] $(\overline{A}+B)(A+B+\overline{D})(B+\overline{C})(B+C+D)$						
5. Obtain minimal POS expression for $\prod M(0, 1, 2, 4)$	5, 6, 9, 11, 12, 13, 14, 15) & implement in NOR (Gate					
 6. Reduce ∏M (1, 2, 3, 5, 6, 7, 8, 9, 12, 13) and impl 7. Reduce the following four Variable expressions by 	ement it in universal Logic K-map and implement them in universal Logic: -						
(a) F (a, b, c, d) = Σ m (0, 1, 2, 3, 8, 9, 10, 11, 13, 15) (b) F (a, b, c, d) = Σ m (0, 1, 2, 3, 8, 9, 10, 11, 13, 15) (c) F (a, b, c, d) = Σ m (3, 4, 6, 7, 11, 12, 13, 14, 15) (e) F (a, b, c, d) = Σ m (2, 3, 5, 7, 9, 11, 12, 13, 14, 15) (f) F (a, b, c, d) = Σ m (4, 5, 6, 12, 14, 15) + Σd (3, 8, 10) (g) F (a, b, c, d) = Σ m (4, 7, 12, 15) + Σd (0, 3, 8, 11) (h) F (a, b, c, d) = Σ m (0, 2, 3, 4, 7, 9, 15) + Σd (6, 8, 11) (i) F (a, b, c, d) = Σ m (0, 2, 3, 4, 7, 9, 15) + Σd (6, 8, 11) (i) F (a, b, c, d) = Σ m (0, 2, 3, 4, 7, 9, 15) + Σd (6, 8, 11) (i) F (a, b, c, d) = Σ m (0, 2, 3, 4, 7, 9, 15) + Σd (6, 8, 11) (i) F (a, b, c, d) = Σ m (0, 2, 3, 4, 7, 9, 15) + Σd (5, 10, 13, 14) (i) F (a, b, c, d) = Σ m (0, 2, 3, 4, 7, 9, 15) + Σd (0, 2, 5) (m) F (a, b, c, d) = Σ m (0, 2, 3, 4, 7, 9, 15) + Σd (0, 2, 5) (m) F (a, b, c, d) = Σ m (1, 3, 7, 8, 12) + Σd (5, 5, 67, 11, 3, 14, 15) (m) F (a, b, c, d) = Σ m (1, 3, 7, 11, 15) + Σd (1, 3, 5, 7) (p) F (a, b, c, d) = Σ m (1, 5, 6, 12, 13, 14). Σd (2, 4) (q) F (p,q,r,s) = Σ(6, 7, 8, 9) + Σd (0, 1, 2, 3, 8, 9, 10, 11) (i) F (w, x, y, z) = Σm (0, 1, 2, 7, 8, 12, 13) + Σd (14, 9) (s) F (a, b, c, d) = Σm (1, 7, 2, 16, 1, 2, 3, 8, 9, 10, 11) (i) F (w, x, y, z) = Σm (0, 1, 2, 5, 6, 8) + d (3, 4, 7, 14) (ii) F (a, b, c, d) = [M (3, 6, 8, 11, 13, 15) + Σd (0, 1, 2, 3) (v) F (a, b, c, d) = [M (3, 6, 8, 11, 13, 14) - [Id (1, 5, 7, 10) (w) F (a, b, c, d) = [M (0, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14), 30(2, 5) (y) F (a, b, c, d) = [M (0, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14), 10 (2, 5) (x) F (a, b, c, d) = [M (0, 1, 4, 5, 8, 13, 14), 11d (6, 9, 12) 							
(BASICS OF DIGITAL ELECTRONICS)	nared by Er. PARAMANANDA GOUDA, Dept of ETC, UCP Engg S	chool					